支持向量分类和多宽度高斯核

Translated title of the contribution: Support vector classification and Gaussian kernel with multiple widths

常群*, 王晓龙, 林沂蒙, 王熙照, Daniel S. YEUNG

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

5 Citations (Scopus)

Abstract

支持向量分类中,高斯核不区分样本中各个特征的重要性,显然各个特征对分类的贡献一般是不相同的。为了体现这种差别从而提高支持向量机的泛化性能,文中提出了多宽度高斯核的概念。多宽度高斯核增加了支持向量机的超级参数,进一步地,文中提出了多参数模型选择算法。算法利用误差界自动实现模型选择。通过实验验证了多宽度高斯核和多参数模型选择算法的有效性。

In support vector classification, Gaussian kernel is insensitive to the differences of features. However, generally, different features function differently in classification. To improve the generalization performance of support vector machines, the Gaussian kernel with multiple widths is proposed to emphasize the different contributions of features to classification. With this kernel, the related model selection scheme is designed which can automatically tune multiple parameters for support vector machines by minimizing the error bound. The efficiencies of the proposed kernel and related model selection algorithms are validated via experiments.

Translated title of the contributionSupport vector classification and Gaussian kernel with multiple widths
Original languageChinese (Simplified)
Pages (from-to)484-487
Number of pages4
Journal电子学报 = Acta Electronica Sinica
Volume35
Issue number3
Publication statusPublished - Mar 2007
Externally publishedYes

Bibliographical note

基金项目: 国家自然科学基金重点项目 (No. 60435020); 国家自然科学基金重大研究计划面上项目 (No. 90612005)

Keywords

  • Error bound
  • Gaussian kernel with multiple widths
  • Model selection with multiple parameters
  • Support vector machines
  • 支持向量机
  • 多宽度高斯核
  • 多参数模型选择
  • 误差界

Fingerprint

Dive into the research topics of 'Support vector classification and Gaussian kernel with multiple widths'. Together they form a unique fingerprint.

Cite this