贝克焦虑量表的心理测量学特性、常模分数及因子结构的研究

Translated title of the contribution: A study of psychometric properties, normative scores and factor structure of Beck Anxiety Inventory Chinese version

郑健荣, 黄炽荣, 黄洁晶, 庄香泉, 王得宝, 郑淑仪, 黄秀英, 陈乾元, 吴基安

Research output: Journal PublicationsJournal Article (refereed)peer-review

Abstract

目的 : 探索Back焦虑量表中文版 (BAI) 的心理测量学特性、常模分数及因子结构。
方法 : 对189例被诊断患有焦虑症或忧郁症的香港精神科门诊病人进行问卷研究。
结果 : BAI的内部一致性相当良好,全量表 (Cronbach α) 系数为0.95,最高的5个百分等级之患者焦虑分数为39分或以上,探索因子分析及验证因子分析发现简单的两因子模型能适切地解释BAI的因子结构。
结论 : 中文版BAI有良好的信度,而其因子结构中的两因子 (生理反应因子及焦虑思想因子) 不仅与原来的BAI两因子相似,也与认知行为理论对焦虑症的解释逻辑一致。

Objective: To explore the psychometric properties,normative data and factorial structure of the Beck Anxiety Inventory-Chinese Version (BAI-Chinese).
Methods: 189 Hong Kong psychiatric out-patients with the diagnosis of either an anxiety or a depressive disorder completed the questionnaires.
Results: The BAI-Chinese was found to have excellent internal consistency (Cronbach α=0.95). The top five percentile scored 39 or above in the BAI-Chinese. Both exploratory and confirmatory factor analyses suggested that a simple 2-factor model would best accommodate the BAI data set.
Conclusion: The BAI-Chinese was found to attain good reliability.Its factors "Physiological Response" and "Anxious Cognition" were similar to those extracted from the original scale, and were consistent with the prevailing cognitive-behavioral model for anxiety.
Translated title of the contributionA study of psychometric properties, normative scores and factor structure of Beck Anxiety Inventory Chinese version
Original languageChinese (Simplified)
Pages (from-to)4-6
Number of pages3
Journal中国临床心理学杂志
Volume10
Issue number1
Publication statusPublished - 2002
Externally publishedYes

Keywords

  • 贝克焦虑量表
  • 心理测量特质
  • 因子结构
  • Beck anxiety inventory
  • Psychometric properties
  • Factor structure

Fingerprint

Dive into the research topics of 'A study of psychometric properties, normative scores and factor structure of Beck Anxiety Inventory Chinese version'. Together they form a unique fingerprint.

Cite this