Abstract
Image restoration is a computationally intensive problem as a large number of pixel values have to be determined. Since the pixel values of digital images can attain only a finite number of values (e.g., 8-bit images can have only 256 gray levels), one would like to recover an image within some dynamic range. This leads to the imposition of box constraints on the pixel values. The traditional gradient projection methods for constrained optimization can be used to impose box constraints, but they may suffer from either slow convergence or repeated searching for active sets in each iteration. In this paper, we develop a new box-constrained multiplicative iterative (BCMI) algorithm for box-constrained image restoration. The BCMI algorithm just requires pixelwise updates in each iteration, and there is no need to invert any matrices. We give the convergence proof of this algorithm and apply it to total variation image restoration problems, where the observed blurry images contain Poisson, Gaussian, or salt-and-pepper noises.
Original language | English |
---|---|
Article number | 6156784 |
Pages (from-to) | 3168-3181 |
Number of pages | 14 |
Journal | IEEE Transactions on Image Processing |
Volume | 21 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2012 |
Externally published | Yes |
Keywords
- Box constraints
- box-constrained multiplicative iterative (BCMI) algorithm
- global convergence
- image restoration