A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems

Delaram YAZDANI, Danial YAZDANI, Donya YAZDANI, Mohammad Nabi OMIDVAR, Amir H. GANDOMI, Xin YAO

Research output: Journal PublicationsJournal Article (refereed)peer-review

3 Citations (Scopus)

Abstract

Population clustering methods, which consider the position and fitness of individuals to form sub-populations in multi-population algorithms, have shown high efficiency in tracking the moving global optimum in dynamic optimization problems. However, most of these methods use a fixed population size, making them inflexible and inefficient when the number of promising regions is unknown. The lack of a functional relationship between the population size and the number of promising regions significantly degrades performance and limits an algorithm’s agility to respond to dynamic changes. To address this issue, we propose a new species-based particle swarm optimization with adaptive population size and number of sub-populations for solving dynamic optimization problems. The proposed algorithm also benefits from a novel systematic adaptive deactivation component that, unlike the previous deactivation components, adapts the computational resource allocation to the sub-populations by considering various characteristics of both the problem and the sub-populations. We evaluate the performance of our proposed algorithm for the Generalized Moving Peaks Benchmark and compare the results with several peer approaches. The results indicate the superiority of the proposed method. © 2023 Copyright held by the owner/author(s).
Original languageEnglish
Article number14
Number of pages25
JournalACM Transactions on Evolutionary Learning and Optimization
Volume3
Issue number4
Early online date14 Jun 2023
DOIs
Publication statusPublished - 31 Dec 2023
Externally publishedYes

Bibliographical note

This work was supported by the Research Institute of Trustworthy Autonomous Systems, the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), and Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531).

Keywords

  • Computational resource allocation
  • Evolutionary dynamic optimization
  • Particle swarm optimization
  • Single-objective dynamic optimization problems
  • Tracking moving global optimum

Fingerprint

Dive into the research topics of 'A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems'. Together they form a unique fingerprint.

Cite this