Al2O3包覆优化LiNi0.8Co0.1Mn0.1O2正极材料性能研究

Translated title of the contribution: Improved performance of LiNi0.8Co0.1Mn0.1O2 via Al2O3 coating

宋世湃, 黄楷, 张晓琨, 向勇

Research output: Journal PublicationsJournal Article (refereed)peer-review

Abstract

通过原子层沉积工艺实现LLiNi0.8Co0.1Mn0.1O2颗粒表面的Al2O3包覆修饰,有效抑制了高镍三元正极材料与电解液的界面副反应,提升了其长循环稳定性。针对较厚的Al2O3包覆层可能阻碍锂离子传输动力学,影响正极材料倍率性能的问题,通过控制原子层沉积圈数,在界面稳定性和界面传输动力学两者间达到了优化平衡。实验结果表明,4圈原子层沉积的Al2O3包覆LiNi0.8Co0.1Mn0.1O2材料兼顾了循环稳定性和倍率性能。1C倍率下循环充放电60次后放电比容量为163.6 mAh/g,在10C倍率下仍具有高达162.6 mAh/g的放电比容量。包覆层厚度的精准控制有助于电极材料性能的最大化。

LiNi0.8Co0.1Mn0.1O2 cathode was modified by Al2O3 coating via atomic layer deposition. Al2O3 coating layer prevents the reaction of the electrode with HF generated in the electrolyte, as well as metal dissolution, resulting in improving cycling stability. Nevertheless, too thick Al2O3 coating layer hinders the Li+ and electron conduction, resulting in poor rate performance. Four cycle Al2O3-coated LiNi0.8Co0.1Mn0.1O2 samples achieve a balance between the inhibition of interface side reaction and the kinetics of interface transport, resulting in best cycle stability and rate performance. Four cycle Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode material can deliver an 60th discharge capacity of 163.6 mAh/g at 1C, and a superior discharge capacity of 162.6 mAh/g at 10C. The performance of electrode materials was maximized by the precise control of the coating thickness..
Translated title of the contributionImproved performance of LiNi0.8Co0.1Mn0.1O2 via Al2O3 coating
Original languageChinese (Simplified)
Pages (from-to)32-36
Number of pages5
Journal电子元件与材料
Volume39
Issue number10
DOIs
Publication statusPublished - 5 Oct 2020
Externally publishedYes

Bibliographical note

资助基金:国家重点研发计划 ( 2017YFB0702802 ) ; 国家自然科学基金 ( 21905040 )

Keywords

  • LiNi0.8Co0.1Mn0.1O2
  • 原子层沉积
  • AL2O3
  • 包覆
  • 循环稳定性
  • 倍率性能
  • atomic layer deposition
  • coating
  • cycling stability
  • rate performance

Fingerprint

Dive into the research topics of 'Improved performance of LiNi0.8Co0.1Mn0.1O2 via Al2O3 coating'. Together they form a unique fingerprint.

Cite this