Benchmarking Dynamic Capacitated Arc Routing Algorithms Using Real-World Traffic Simulation

Hao TONG, Leandro L. MINKU, Stefan MENZEL, Bernhard SENDHOFF, Xin YAO

Research output: Book Chapters | Papers in Conference ProceedingsConference paper (refereed)Researchpeer-review

1 Citation (Scopus)

Abstract

The dynamic capacitated arc routing problem (DCARP) aims at re-scheduling the service plans of agents, such as vehicles in a city scenario, when dynamic events deteriorate the quality of the current schedule. Various algorithms have been proposed to solve DCARP instances in different dynamic scenarios. However, most existing work evaluated their algorithms' performance based on artificially constructed dynamic environments instead of using more realistic traffic simulations which are built on actual traffic data. In this paper, we constructed a novel DCARP benchmarking framework based on the Simulation of Urban MObility (SUMO) transportation simulation software, which allows to include real-world traffic environments for generating a set of DCARP instances from dynamic events, such as road congestion or task changes. The flexibility of the framework allows to develop DCARP optimization algorithms and evaluate their effectiveness more comprehensively. We use the benchmarking framework to generate 12 different dynamic instances using real-world traffic data of Dublin City. We then demonstrate the value of our framework by using these instances to compare our previously proposed hybrid local search algorithm (HyLS) with a state-of-the-art meta-heuristic optimization algorithm. The generated benchmark scenarios indicate that HyLS is a very effective optimizer on DCARP scenarios with real traffic data for reducing the total service cost. They also demonstrate the importance of our DCARP benchmarking framework for the development and benchmarking of optimization algorithms in more realistic scenarios.

Original languageEnglish
Title of host publication2022 IEEE Congress on Evolutionary Computation, CEC 2022 - Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665467087
ISBN (Print)9781665467087
DOIs
Publication statusPublished - 18 Jul 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Funding

Hao Tong gratefully acknowledges the financial support from Honda Research Institute Europe (HRI-EU). This work was also support by Research Institute of Trustworthy Autonomous Systems (RITAS), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), the Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531).

Keywords

  • Dynamic capacitated arc routing problem
  • Meta-heuristic algorithms
  • Online optimization
  • Real-world application
  • SUMO

Fingerprint

Dive into the research topics of 'Benchmarking Dynamic Capacitated Arc Routing Algorithms Using Real-World Traffic Simulation'. Together they form a unique fingerprint.

Cite this