Causal identification under Markov Equivalence : Completeness results


*Corresponding author for this work

Research output: Book Chapters | Papers in Conference ProceedingsConference paper (refereed)Researchpeer-review

13 Citations (Scopus)


Causal effect identification is the task of determining whether a causal distribution is computable from the combination of an observational distribution and substantive knowledge about the domain under investigation. One of the most studied versions of this problem assumes that knowledge is articulated in the form of a fully known causal diagram, which is arguably a strong assumption in many settings. In this paper, we relax this requirement and consider that the knowledge is articulated in the form of an equivalence class of causal diagrams, in particular, a partial ancestral graph (PAG). This is attractive because a PAG can be learned directly from data, and the scientist does not need to commit to a particular, unique diagram. There are different sufficient conditions for identification in PAGs, but none is complete. We derive a complete algorithm for identification given a PAG. This implies that whenever the causal effect is identifiable, the algorithm returns a valid identification expression; alternatively, it will throw a failure condition, which means that the effect is provably not identifiable. We further provide a graphical characterization of non-identifiability of causal effects in PAGs.
Original languageEnglish
Title of host publicationProceedings of the 36th International Conference on Machine Learning
Number of pages9
Publication statusPublished - Jun 2019
Event36th International Conference on Machine Learning - Long Beach Convention Center, Long Beach, United States
Duration: 9 Jun 201915 Jun 2019

Publication series

NameProceedings of Machine Learning Research (PMLR)
ISSN (Electronic)2640-3298


Conference36th International Conference on Machine Learning
Abbreviated titleICML 2019
Country/TerritoryUnited States
CityLong Beach
Internet address

Bibliographical note

Bareinboim and Jaber are supported in parts by grants from NSF IIS-1704352, IIS1750807 (CAREER), IBM Research, and Adobe Research. Zhang’s research was supported in part by the Research Grants Council of Hong Kong under the General Research Fund LU13602818.


Dive into the research topics of 'Causal identification under Markov Equivalence : Completeness results'. Together they form a unique fingerprint.

Cite this