Projects per year
Abstract
Causal effect identification is the task of determining whether a causal distribution is computable from the combination of an observational distribution and substantive knowledge about the domain under investigation. One of the most studied versions of this problem assumes that knowledge is articulated in the form of a fully known causal diagram, which is arguably a strong assumption in many settings. In this paper, we relax this requirement and consider that the knowledge is articulated in the form of an equivalence class of causal diagrams, in particular, a partial ancestral graph (PAG). This is attractive because a PAG can be learned directly from data, and the scientist does not need to commit to a particular, unique diagram. There are different sufficient conditions for identification in PAGs, but none is complete. We derive a complete algorithm for identification given a PAG. This implies that whenever the causal effect is identifiable, the algorithm returns a valid identification expression; alternatively, it will throw a failure condition, which means that the effect is provably not identifiable. We further provide a graphical characterization of non-identifiability of causal effects in PAGs.
Original language | English |
---|---|
Title of host publication | Proceedings of the 36th International Conference on Machine Learning |
Editors | Kamalika CHAUDHURI, Ruslan SALAKHUTDINOV |
Pages | 2981-2989 |
Number of pages | 9 |
Publication status | Published - Jun 2019 |
Event | 36th International Conference on Machine Learning - Long Beach Convention Center, Long Beach, United States Duration: 9 Jun 2019 → 15 Jun 2019 https://icml.cc/Conferences/2019 |
Publication series
Name | Proceedings of Machine Learning Research (PMLR) |
---|---|
Volume | 97 |
ISSN (Electronic) | 2640-3298 |
Conference
Conference | 36th International Conference on Machine Learning |
---|---|
Abbreviated title | ICML 2019 |
Country/Territory | United States |
City | Long Beach |
Period | 9/06/19 → 15/06/19 |
Internet address |
Funding
Bareinboim and Jaber are supported in parts by grants from NSF IIS-1704352, IIS1750807 (CAREER), IBM Research, and Adobe Research. Zhang’s research was supported in part by the Research Grants Council of Hong Kong under the General Research Fund LU13602818.
Fingerprint
Dive into the research topics of 'Causal identification under Markov Equivalence : Completeness results'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Logical Investigations of Causal Models and Counterfactual Structures (因果模型與反實結構的邏輯探究)
ZHANG, J. (PI), EBERHARDT, F. (CoI) & YIN, Y. (CoI)
Research Grants Council (HKSAR)
1/09/18 → 31/12/20
Project: Grant Research
-
Causation, Decision, and Imprecise Probabilities
ZHANG, J. (PI) & SEIDENFELD, T. (CoI)
Research Grants Council (HKSAR)
1/01/16 → 31/12/17
Project: Grant Research