Abstract
The long-spined sea urchin Diadema setosum is an algal and coral feeder widely distributed in the Indo-Pacific that can cause severe bioerosion on the reef community. However, the lack of genomic information has hindered the study of its ecology and evolution. Here, we report the chromosomal-level genome (885.8 Mb) of the long-spined sea urchin D. setosum using a combination of PacBio long-read sequencing and Omni-C scaffolding technology. The assembled genome contains a scaffold N50 length of 38.3 Mb, 98.1% of complete BUSCO (Geno, metazoa_odb10) genes (the single copy score is 97.8% and the duplication score is 0.3%), and 98.6% of the sequences are anchored to 22 pseudo-molecules/chromosomes. A total of 27,478 gene models have were annotated, reaching a total of 28,414 transcripts, including 5,384 tRNA and 23,030 protein-coding genes. The high-quality genome of D. setosum presented here is a valuable resource for the ecological and evolutionary studies of this coral reef-associated sea urchin.
Original language | English |
---|---|
Journal | GigaByte |
Volume | 2024 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 GigaScience Press. All rights reserved.
Funding
This work was funded and supported by the Hong Kong Research Grant Council Collaborative Research Fund (C4015-20EF), CUHK Strategic Seed Funding for Collaborative Research Scheme (3133356), and CUHK Group Research Scheme (3110154).
Keywords
- Animal Genetics
- Marine Biology
- Subjects Genetics and Genomics