Abstract
Four-dimensional cone-beam computed tomography (4D CBCT) has been developed to provide a sequence of phase-resolved reconstructions in image-guided radiation therapy. However, 4D CBCT images are degraded by severe streaking artifacts and noise because the phase-resolved image is an extremely sparse-view CT procedure wherein a few under-sampled projections are used for the reconstruction of each phase. Aiming at improving the overall quality of 4D CBCT images, we proposed two CNN models, named N-Net and CycN-Net, respectively, by fully excavating the inherent property of 4D CBCT. To be specific, the proposed N-Net incorporates the prior image reconstructed from entire projection data based on U-Net to boost the image quality for each phase-resolved image. Based on N-Net, a temporal correlation among the phase-resolved images is also considered by the proposed CycN-Net. Extensive experiments on both XCAT simulation data and real patient 4D CBCT datasets were carried out to verify the feasibility of the proposed CNNs. Both networks can effectively suppress streaking artifacts and noise while restoring the distinct features simultaneously, compared with the existing CNN models and two state-of-the-art iterative algorithms. Moreover, the proposed method is robust in handling complicated tasks of various patient datasets and imaging devices, which implies its excellent generalization ability.
Original language | English |
---|---|
Pages (from-to) | 3054-3064 |
Number of pages | 11 |
Journal | IEEE Transactions on Medical Imaging |
Volume | 40 |
Issue number | 11 |
Early online date | 19 May 2021 |
DOIs | |
Publication status | Published - 27 Oct 2021 |
Externally published | Yes |
Bibliographical note
Acknowledgment:The authors express their gratitude to Markus Susenburger for his valuable comments and suggestions. They would also like to thank all the anonymous reviewers for their constructive suggestions, which help to improve the quality of this work.
Publisher Copyright:
© 1982-2012 IEEE.
Keywords
- 4D cone-beam computed tomography (4D CBCT)
- artifact reduction
- deep learning
- prior knowledge
- spatiotemporal resolution