Abstract
An important and challenging data mining application in marketing is to learn models for predicting potential customers who contribute large profit to a company under resource constraints. In this paper, we first formulate this learning problem as a constrained optimization problem and then converse it to an unconstrained Multi-objective Optimization Problem (MOP). A parallel Multi-Objective Evolutionary Algorithm (MOEA) on consumer-level graphics hardware is used to handle the MOP. We perform experiments on a real-life direct marketing problem to compare the proposed method with the parallel Hybrid Genetic Algorithm, the DMAX approach, and a sequential MOEA. It is observed that the proposed method is much more effective and efficient than the other approaches.
| Original language | English |
|---|---|
| Title of host publication | 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010 |
| Publisher | IEEE |
| ISBN (Electronic) | 9781424469116, 9781424469109 |
| ISBN (Print) | 9781424469093 |
| DOIs | |
| Publication status | Published - Jul 2010 |
| Event | 2010 IEEE Congress on Evolutionary Computation (CEC) - Barcelona, Spain Duration: 18 Jul 2010 → 23 Jul 2010 |
Conference
| Conference | 2010 IEEE Congress on Evolutionary Computation (CEC) |
|---|---|
| Period | 18/07/10 → 23/07/10 |