Abstract
The service life of large battery packs can be significantly influenced by only one or two abnormal cells with faster aging rates. However, the early-stage identification of lifetime abnormality is challenging due to the low abnormal rate and imperceptible initial performance deviations. This work proposes a lifetime abnormality detection method for batteries based on few-shot learning and using only the first-cycle aging data. Verified with the largest known dataset with 215 commercial lithium-ion batteries, the method can identify all abnormal batteries, with a false alarm rate of only 3.8%. It is also found that any capacity and resistance-based approach can easily fail to screen out a large proportion of the abnormal batteries, which should be given enough attention. This work highlights the opportunities to diagnose lifetime abnormalities via “big data” analysis, without requiring additional experimental effort or battery sensors, thereby leading to extended battery life, increased cost-benefit, and improved environmental friendliness.
Original language | English |
---|---|
Article number | 2305315 |
Journal | Advanced Science |
Early online date | 11 Dec 2023 |
DOIs | |
Publication status | E-pub ahead of print - 11 Dec 2023 |
Bibliographical note
Publisher Copyright:© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Keywords
- big data
- early-stage detection
- few-shot learning
- lifetime abnormality
- lithium-ion battery