TY - JOUR
T1 - Few-Shot Named Entity Recognition via Meta-Learning
AU - LI, Jing
AU - CHIU, Billy
AU - FENG, Shanshan
AU - WANG, Hao
PY - 2022/9
Y1 - 2022/9
N2 - Few-shot learning under the N-way K-shot setting (i.e., K annotated samples for each of N classes) has been widely studied in relation extraction (e.g., FewRel) and image classification (e.g., Mini-ImageNet). Named entity recognition (NER) is typically framed as a sequence labeling problem where the entity classes are inherently entangled together because the entity number and classes in a sentence are not known in advance, leaving the N-way K-shot NER problem so far unexplored. In this paper, we first formally define a more suitable N-way K-shot setting for NER. Then we propose FewNER, a novel meta-learning approach for few-shot NER. FewNER separates the entire network into a task-independent part and a task-specific part. During training in FewNER, the task-independent part is meta-learned across multiple tasks and a task-specific part is learned for each single task in a low-dimensional space. At test time, FewNER keeps the task-independent part fixed and adapts to a new task via gradient descent by updating only the task-specific part, resulting in it being less prone to overfitting and more computationally efficient. The results demonstrate that FewNER achieves state-of-the-art performance against nine baseline methods by significant margins on three adaptation experiments.
AB - Few-shot learning under the N-way K-shot setting (i.e., K annotated samples for each of N classes) has been widely studied in relation extraction (e.g., FewRel) and image classification (e.g., Mini-ImageNet). Named entity recognition (NER) is typically framed as a sequence labeling problem where the entity classes are inherently entangled together because the entity number and classes in a sentence are not known in advance, leaving the N-way K-shot NER problem so far unexplored. In this paper, we first formally define a more suitable N-way K-shot setting for NER. Then we propose FewNER, a novel meta-learning approach for few-shot NER. FewNER separates the entire network into a task-independent part and a task-specific part. During training in FewNER, the task-independent part is meta-learned across multiple tasks and a task-specific part is learned for each single task in a low-dimensional space. At test time, FewNER keeps the task-independent part fixed and adapts to a new task via gradient descent by updating only the task-specific part, resulting in it being less prone to overfitting and more computationally efficient. The results demonstrate that FewNER achieves state-of-the-art performance against nine baseline methods by significant margins on three adaptation experiments.
UR - http://www.scopus.com/inward/record.url?scp=85097145585&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2020.3038670
DO - 10.1109/TKDE.2020.3038670
M3 - Journal Article (refereed)
SN - 1041-4347
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
ER -