Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage

Fang WU, Heng QUAN, Jiang HAN, Xiaoli PENG, Zongkai YAN, Xiaokun ZHANG, Yong XIANG*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

12 Citations (Scopus)

Abstract

Lithium metal batteries are promising candidates for next generation high energy batteries. However, an undesirable dendrite growth hinders their practical applications. Herein, a three-dimensional (3D) porous carbon nanotube film decorated with Ag nanoparticles (CNT/Ag) has been synthesized via the thermal decomposition reaction of AgNO3 into Ag nanoparticles, and then is transformed into a 3D porous CNT/Ag/Li film via thermal infusion to obtain a high-performance free-standing lithium host. This as-formed 3D CNT/Ag/Li host can effectively restrain the dendrite growth by guiding Li deposition via the highly lithiophilic Ag nanoparticle seeds and lowering local current density of the highly conductive matrix. The as-prepared CNT/Ag/Li electrode exhibits long-term cycling stability over 200 cycles at a current density of 1 mA cm-2 with an areal capacity of 1.0 mA h cm-2. Moreover, the full cell paired with a sulfur/C cathode shows good cycling stability. Therefore, the 3D porous CNT/Ag/Li film formed via a facile three-step fabrication process can enlarge the cycle lifetime of a lithium metal anode.

Original languageEnglish
Pages (from-to)30880-30886
Number of pages7
JournalRSC Advances
Volume10
Issue number51
DOIs
Publication statusE-pub ahead of print - 20 Aug 2020
Externally publishedYes

Funding

This work was supported by the financial support from the startup funds from the University of Electronic Science and Technology of China (Y030202059018003).

Fingerprint

Dive into the research topics of 'Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage'. Together they form a unique fingerprint.

Cite this