Gas-liquid two-phase flow simulation of wetted wall flows in packed columns

Yoshiyuki ISO, Xi CHEN

Research output: Book Chapters | Papers in Conference ProceedingsConference paper (refereed)Researchpeer-review

1 Citation (Scopus)

Abstract

Gas-liquid two-phase interfacial flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, and distillation. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the small scale behavior of wetted wall flows in packing elements are very important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focuses on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends primarily on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area. Copyright © 2010 by ASME.
Original languageEnglish
Title of host publicationProceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition
PublisherAmerican Society of Mechanical Engineers(ASME)
Pages95-104
Number of pages10
Volume12
ISBN (Print)9780791844496
DOIs
Publication statusPublished - 2010
Externally publishedYes
EventASME 2010 International Mechanical Engineering Congress and Exposition - Vancouver, Canada
Duration: 12 Nov 201018 Nov 2010

Congress

CongressASME 2010 International Mechanical Engineering Congress and Exposition
Country/TerritoryCanada
CityVancouver
Period12/11/1018/11/10

Keywords

  • CFD
  • Film
  • Gas-liquid two-phase flow
  • Packed column
  • Rivulet
  • Texture
  • Transition
  • Wetted wall flow

Fingerprint

Dive into the research topics of 'Gas-liquid two-phase flow simulation of wetted wall flows in packed columns'. Together they form a unique fingerprint.

Cite this