Projects per year
Abstract
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract interimage correspondence is crucial for the CoSOD task. In this article, we propose a global-and-local collaborative learning (GLNet) architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM) to capture the comprehensive interimage corresponding relationship among different images from the global and local perspectives. First, we treat different images as different time slices and use 3-D convolution to integrate all intrafeatures intuitively, which can more fully extract the global group semantics. Second, we design a pairwise correlation transformation (PCT) to explore similarity correspondence between pairwise images and combine the multiple local pairwise correspondences to generate the local interimage relationship. Third, the interimage relationships of the GCM and LCM are integrated through a global-and-local correspondence aggregation (GLA) module to explore more comprehensive interimage collaboration cues. Finally, the intra and inter features are adaptively integrated by an intra-and-inter weighting fusion (AEWF) module to learn co-saliency features and predict the co-saliency map. The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms 11 state-of-the-art competitors trained on some large datasets (about 8k–200k images).
Original language | English |
---|---|
Pages (from-to) | 1920-1931 |
Number of pages | 12 |
Journal | IEEE Transactions on Cybernetics |
Volume | 53 |
Issue number | 3 |
Early online date | 22 Jul 2022 |
DOIs | |
Publication status | Published - Mar 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2013 IEEE.
Keywords
- 3-D convolution
- co-salient object detection (CoSOD)
- global correspondence modeling (GCM)
- local correspondence modeling (LCM)
Fingerprint
Dive into the research topics of 'Global-and-Local Collaborative Learning for Co-Salient Object Detection'. Together they form a unique fingerprint.Projects
- 1 Active
-
Adaptive Dynamic Range Enhancement Oriented to High Dynamic Display (面向高動態顯示的自適應動態範圍增強)
KWONG, S. T. W. (PI), KUO, C.-C. J. (CoI), WANG, S. (CoI) & ZHANG, X. (CoI)
Research Grants Council (HKSAR)
1/01/21 → 31/12/24
Project: Grant Research