High-precision camera distortion measurements with a "gcalibration harp"

Zhongwei TANG*, Rafael GROMPONE VON GIOI, Pascal MONASSE, Jean-Michel MOREL

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

19 Citations (Scopus)

Abstract

This paper addresses the high-precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern that contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods," we built a "calibration harp" instead of the classic flat patterns to obtain a high-precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits us to control state-of-the art global camera calibration algorithms: it permits us to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision. © 2012 Optical Society of America.
Original languageEnglish
Pages (from-to)2134-2143
Number of pages10
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume29
Issue number10
DOIs
Publication statusPublished - Oct 2012
Externally publishedYes

Funding

This work was supported by Agence Nationale de la Recherche ANR-09-CORD-003 (Callisto project), the Mathématiques de l’Imagerie Satellitaire Spatiale (MISS) project of Centre National d’Etudes Spatiales, the Office of Naval Research under grant N00014-97-1-0839, and the European Research Council, advanced grant “Twelve labours.”

Fingerprint

Dive into the research topics of 'High-precision camera distortion measurements with a "gcalibration harp"'. Together they form a unique fingerprint.

Cite this