Highly Biocompatible Polyester-Based Piezoelectric Elastomer with Antitumor and Antibacterial Activity for Ultrasound-Enhanced Piezoelectric Therapy

Xiangtian DENG, Renliang ZHAO, Yunfeng TANG, Min YI, Zilu GE, Dong WANG, Qian FANG, Zhencheng XIONG, Ao DUAN, Wenzheng LIU, Zhen ZHANG, Yong XIANG, Xiaoran HU*, Wei LIN*, Guanglin WANG*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

2 Citations (Scopus)

Abstract

Currently, the use of piezoelectric materials to provide sustainable and noninvasive bioelectric stimulation to eradicate tumor cells and accelerate wound healing has raised wide attention. The development of a multifunctional piezoelectric elastomer with the ability to perform in situ tumor therapy as well as wound repair is of paramount importance. However, current piezoelectric materials have a large elastic modulus and limited stretchability, making it difficult to match with the dynamic curvature changes of the wound. Therefore, by copolymerizing lactic acid, butanediol, sebacic acid, and itaconic acid to develop a piezoelectric elastomer (PLBSIE), we construct a new ultrasound-activated PLBSIE-based tumor/wound unified therapeutic platform. Excitedly, it showed outstanding piezoelectric performance and high stretchability, and the separated carrier could react with water to generate highly cytotoxic reactive oxygen species (ROS), contributing to effectively killing tumor cells and eliminating bacteria through piezoelectric therapy. In addition, ultrasound-triggered piezoelectric effects could promote the migration and differentiation of wound-healing-related cells, thus accelerating wound healing. Herein, such a piezoelectric elastomer exerted a critical role in postoperative tumor-induced wound therapy and healing with the merits of possessing multifunctional abilities. Taken together, the developed ultrasound-activated PLBSIE will offer a comprehensive treatment for postoperative osteosarcoma therapy.

Original languageEnglish
Pages (from-to)55308-55322
Number of pages15
JournalACS Applied Materials and Interfaces
Volume15
Issue number48
Early online date22 Nov 2023
DOIs
Publication statusPublished - 6 Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

Keywords

  • antibacterial
  • antitumor
  • osteosarcoma
  • piezoelectric elastomer
  • ultrasound

Fingerprint

Dive into the research topics of 'Highly Biocompatible Polyester-Based Piezoelectric Elastomer with Antitumor and Antibacterial Activity for Ultrasound-Enhanced Piezoelectric Therapy'. Together they form a unique fingerprint.

Cite this