How interlayer twist angles affect thermal conduction of double-walled nanotubes: A non-equilibrium molecular dynamics study

Xianhua NIE, Li ZHAO, Shuai DENG, Xi CHEN

Research output: Journal PublicationsJournal Article (refereed)peer-review

5 Citations (Scopus)


Carbon nanotubes have been widely considered as a promising low dimensional material in microelectronic, chemical and biological applications. Moreover, assisted by the boron nitride nanotube, the combined nanotube has better strength and thermal stability. In these multi-walled nanotubes, the interlayer twist angle could affect the thermal conductivity. In our previous studies, effects of the interlayer twist angle on thermal conductivity of multilayer graphene have been carefully investigated. However, few studies focus on the thermal conductivity on multi-walled nanotubes with interlayer twist angles. Such knowledge gap poses challenges to their potential applications. Therefore, in this study, the thermal conductivity of 4 types of nanotubes, including double-walled carbon nanotube, double-walled boron nitride nanotube, boron nitride nanotube coaxially wrapped by carbon nanotube and carbon nanotube coaxially wrapped by boron nitride nanotube, is investigated based on the non-equilibrium molecular dynamics simulation. The size effect is firstly evaluated, and then, five different twisted structures according to the chiral angle of the inner tube were taken into consideration at five different temperatures. Moreover, the phonon vibrational density of state was estimated to analyze the underlying mechanisms during the thermal conduction. The results indicate that the interlayer twist angle affects the thermal conductivity. With a constant chiral angle of the outer tube, the thermal conductivity increases as the chiral angle of the inner tube increases, and the maximum value of the thermal conductivity can be obtained when the chiral angle of the inner tube is 30.00°. The observation would guide to study thermal transport in the twisted low dimensional structures. © 2020
Original languageEnglish
Article number120234
JournalInternational Journal of Heat and Mass Transfer
Early online date31 Jul 2020
Publication statusPublished - Oct 2020
Externally publishedYes

Bibliographical note

The work is supported by the National Key Research and Development Plan (Grant No. 2018YFB0905103). In addition, the financial support from the China Scholarship Council (CSC, Grant No. 201906250021) to the first author is gratefully acknowledged.


  • Boron nitride nanotube
  • Carbon nanotube
  • Non-equilibrium molecular dynamics
  • Thermal conductivity
  • Twist angle


Dive into the research topics of 'How interlayer twist angles affect thermal conduction of double-walled nanotubes: A non-equilibrium molecular dynamics study'. Together they form a unique fingerprint.

Cite this