Identification of faulty sensors using principal component analysis

Ricardo DUNIA, S. Joe QIN*, Thomas F. EDGAR, Thomas J. MCAVOY

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

505 Citations (Scopus)


Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstruction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient behavior of a number of sensor faults in various types of residuals is analyzed. A sensor validity index (SVI) is proposed to determine the status of each sensor. On-line implementation of the SVI is examined for different types of sensor faults. The way the index is filtered represents an important tuning parameter for sensor fault identification. An example using boiler process data demonstrates attractive features of the SVI.
Original languageEnglish
Pages (from-to)2797-2812
Number of pages16
JournalAICHE Journal
Issue number10
Publication statusPublished - Oct 1996
Externally publishedYes


Dive into the research topics of 'Identification of faulty sensors using principal component analysis'. Together they form a unique fingerprint.

Cite this