Abstract
Small targets are often submerged in cluttered backgrounds of infrared images. Conventional detectors tend to generate false alarms, while CNN-based detectors lose small targets in deep layers. To this end, we propose iSmallNet, a multi-stream densely nested network with label decoupling for infrared small object detection. On the one hand, to fully exploit the shape information of small targets, we decouple the original labeled ground-truth (GT) map into an interior map and a boundary one. The GT map, in collaboration with the two additional maps, tackles the unbalanced distribution of small object boundaries. On the other hand, two key modules are delicately designed and incorporated into the proposed network to boost the overall performance. First, to maintain small targets in deep layers, we develop a multi-scale nested interaction module to explore a wide range of context information. Second, we develop an interior-boundary fusion module to integrate multi-granularity information. Experiments on NUAA-SIRST and NUDT-SIRST clearly show the superiority of iSmallNet over 11 state-of-the-art detectors.
Original language | English |
---|---|
Number of pages | 5 |
DOIs | |
Publication status | Published - 4 Jun 2023 |
Event | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Conference
Conference | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
---|---|
Period | 4/06/23 → 10/06/23 |
Bibliographical note
This work was partially supported by the National Natural Science Foundation of China (No. 62276129) and the Natural Science Foundation of Jiangsu Province (No. BK20220890).Publisher Copyright:
© 2023 IEEE.
Keywords
- Infrared small target detection
- densely nested network
- label decoupling
- multi-scale learning