TY - JOUR
T1 - Knowledge Transfer Genetic Programming With Auxiliary Population for Solving Uncertain Capacitated Arc Routing Problem
AU - ARDEH, Mazhar Ansari
AU - MEI, Yi
AU - ZHANG, Mengjie
AU - YAO, Xin
PY - 2023
Y1 - 2023
N2 - The uncertain capacitated arc routing problem (UCARP) is an NP-hard combinatorial optimization problem with a wide range of applications in logistics domains. Genetic programming (GP) hyper-heuristic has been successfully applied to evolve routing policies to effectively handle the uncertain environment in this problem. The real world usually encounters different but related instances due to events, such as season change and vehicle breakdowns, and it is desirable to transfer knowledge gained from solving one instance to help solve another related one. However, the solutions found by the GP process can lack diversity, and the existing methods use the transferred knowledge mainly during initialization. Thus, they cannot sufficiently handle the change from the source to the target instance. To address this issue, we develop a novel knowledge transfer GP with an auxiliary population. In addition to the main population for the target instance, we initialize an auxiliary population using the transferred knowledge and evolve it alongside the main population. We develop a novel scheme to carefully exchange the knowledge between the two populations, and a surrogate model to evaluate the auxiliary population efficiently. The experimental results confirm that the proposed method performed significantly better than the state-of-the-art GP approaches for a wide range of uncertain arc routing instances, in terms of both final performance and convergence speed. © 1997-2012 IEEE.
AB - The uncertain capacitated arc routing problem (UCARP) is an NP-hard combinatorial optimization problem with a wide range of applications in logistics domains. Genetic programming (GP) hyper-heuristic has been successfully applied to evolve routing policies to effectively handle the uncertain environment in this problem. The real world usually encounters different but related instances due to events, such as season change and vehicle breakdowns, and it is desirable to transfer knowledge gained from solving one instance to help solve another related one. However, the solutions found by the GP process can lack diversity, and the existing methods use the transferred knowledge mainly during initialization. Thus, they cannot sufficiently handle the change from the source to the target instance. To address this issue, we develop a novel knowledge transfer GP with an auxiliary population. In addition to the main population for the target instance, we initialize an auxiliary population using the transferred knowledge and evolve it alongside the main population. We develop a novel scheme to carefully exchange the knowledge between the two populations, and a surrogate model to evaluate the auxiliary population efficiently. The experimental results confirm that the proposed method performed significantly better than the state-of-the-art GP approaches for a wide range of uncertain arc routing instances, in terms of both final performance and convergence speed. © 1997-2012 IEEE.
KW - Arc routing
KW - genetic programming (GP)
KW - hyper-heuristics
KW - transfer optimization
UR - http://www.scopus.com/inward/record.url?scp=85128616812&partnerID=8YFLogxK
U2 - 10.1109/TEVC.2022.3169289
DO - 10.1109/TEVC.2022.3169289
M3 - Journal Article (refereed)
SN - 1089-778X
VL - 27
SP - 311
EP - 325
JO - IEEE Transactions on Evolutionary Computation
JF - IEEE Transactions on Evolutionary Computation
IS - 2
ER -