Learning-aided Evolution for Optimization

Zhi-Hui ZHAN, Jian-Yu LI, Sam KWONG, Jun ZHANG

Research output: Journal PublicationsJournal Article (refereed)peer-review

52 Citations (Scopus)

Abstract

Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this article proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on EC competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution.

Original languageEnglish
Pages (from-to)1794-1808
Number of pages15
JournalIEEE Transactions on Evolutionary Computation
Volume27
Issue number6
Early online date29 Dec 2022
DOIs
Publication statusPublished - Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 1997-2012 IEEE.

Funding

No Statement Available

Keywords

  • Artificial neural network (ANN)
  • differential evolution (DE)
  • evolutionary computation (EC)
  • learning-aided evolution
  • many-objective optimization
  • multiobjective optimization
  • particle swarm optimization (PSO)
  • single-objective optimization

Fingerprint

Dive into the research topics of 'Learning-aided Evolution for Optimization'. Together they form a unique fingerprint.

Cite this