Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells

Shengfan WU, Jie ZHANG, Minchao QIN, Fengzhu Li, Xiang DENG, Xinhui LU, Wen Jung LI, Alex K.Y. JEN*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

11 Citations (Scopus)

Abstract

The crystallographic orientation of polycrystalline perovskites is found to be strongly correlated with their intrinsic properties; therefore, it can be used to effectively enhance the performance of perovskite-based devices. Here, a facile way of manipulating the facet orientation of polycrystalline perovskite films in a controllable manner is reported. By incorporating a cross-linkable organic ligand into the perovskite precursor solution, the crystal orientation disorder can be reduced in the resultant perovskite films to exhibit the prominent (001) orientation with a preferred stacking mode. Moreover, the as-formed low-dimensional perovskites (LDPs) between the organic ligand and the excess lead iodide can passivate the defects around the grain boundaries. Consequently, highly efficient p-i-n structured perovskite solar cells (PSCs) can be made in both rigid and flexible forms from modified perovskites to show high power conversion efficiencies (PCE) of 24.12% and 23.23%, respectively. The devices also exhibit superior long-term stability in a humid environment (with T90 > 1000 h) and under thermal stress (retaining 87% of its initial PCE after 1000 h). More importantly, the ligand enables the derived LDPs to be crosslinked (under 254 nm UV illumination) to demonstrate excellent mechanical bending durability in flexible devices.

Original languageEnglish
Article number2207189
JournalSmall
Volume19
Issue number19
DOIs
Publication statusPublished - 10 May 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Wiley-VCH GmbH.

Keywords

  • cross-linking
  • crystallographic orientation
  • flexible devices
  • perovskites
  • solar cells

Fingerprint

Dive into the research topics of 'Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this