MBA-STNet: Bayes-enhanced Discriminative Multi-task Learning for Flow Prediction

Hao MIAO, Jiaxing SHEN, Jiannong CAO, Jiangnan XIA, Senzhang WANG

Research output: Journal PublicationsJournal Article (refereed)peer-review

4 Citations (Scopus)

Abstract

Crowd flow prediction, which aims to predict the in/out flows of different areas of a city, plays an important role in various applications like intelligent transportation. The challenges of this problem lie in both dynamic mobility patterns of crowds and complex spatial-temporal correlations. Meanwhile, crowd flow is highly correlated to and affected by the Origin-Destination (OD) locations of the flow trajectories, which is largely ignored by existing works. In this paper, we study the novel problem of predicting the crowd flow and flow OD simultaneously, and propose a multi-task bayes-enhanced adversarial spatial temporal network entitled MBA-STNet. MBA-STNet adopts a shared-private framework that contains private spatial-temporal encoders, a shared spatial-temporal encoder, and decoders to learn the task-specific features and shared features. To effectively extract discriminative shared features, an adversarial loss on shared feature extraction is incorporated to reduce information redundancy. A Bayesian Heterogeneous Spatio-temporal Attention Network is designed to learn complex spatio-temporal correlations and alleviate data uncertainty. We also design an attentive temporal queue to capture the complex temporal dependency automatically without domain knowledge. Extensive evaluations are conducted over the bike and taxicab trip datasets in New York. The results demonstrate that the proposed MBA-STNet is superior to state-of-the-art methods.

Original languageEnglish
Number of pages14
JournalIEEE Transactions on Knowledge and Data Engineering
DOIs
Publication statusE-pub ahead of print - 2 Jun 2022
Externally publishedYes

Bibliographical note

Authors would like to express their appreciation to reviewers and editors for their valuable comments and effort. This work was supported by TRS RGC Theme-based Research Scheme 2020/21 (Tenth Round) (T41-603/20-R), CRF RGC Collaborative Research Fund 2018/19 (RGC No.: C5026-18G) and PolyU Internal Start-up Fund (P0035274). It was also partially supported by the National Natural Science Foundation of China (No.: 62172443) and the Fundamental Research Funds for the Central Universities (No.: NZ2020014).

Keywords

  • Adversarial Learning
  • Bayesian Neural Network
  • Flow Prediction
  • Multi-task Learning

Fingerprint

Dive into the research topics of 'MBA-STNet: Bayes-enhanced Discriminative Multi-task Learning for Flow Prediction'. Together they form a unique fingerprint.

Cite this