TY - JOUR
T1 - Nonrigid iterative closest points for registration of 3D biomedical surfaces
AU - LIANG, Luming
AU - WEI, Mingqiang
AU - SZYMCZAK, Andrzej
AU - PETRELLA, Anthony
AU - XIE, Haoran
AU - QIN, Jing
AU - WANG, Jun
AU - WANG, Fu Lee
PY - 2018/1
Y1 - 2018/1
N2 - Advanced 3D optical and laser scanners bring new challenges to computer graphics. We present a novel nonrigid surface registration algorithm based on Iterative Closest Point (ICP) method with multiple correspondences. Our method, called the Nonrigid Iterative Closest Points (NICPs), can be applied to surfaces of arbitrary topology. It does not impose any restrictions on the deformation, e.g. rigidity or articulation. Finally, it does not require parametrization of input meshes. Our method is based on an objective function that combines distance and regularization terms. Unlike the standard ICP, the distance term is determined based on multiple two-way correspondences rather than single one-way correspondences between surfaces. A Laplacian-based regularization term is proposed to take full advantage of multiple two-way correspondences. This term regularizes the surface movement by enforcing vertices to move coherently with their 1-ring neighbors. The proposed method achieves good performances when no global pose differences or significant amount of bending exists in the models, for example, families of similar shapes, like human femur and vertebrae models.
AB - Advanced 3D optical and laser scanners bring new challenges to computer graphics. We present a novel nonrigid surface registration algorithm based on Iterative Closest Point (ICP) method with multiple correspondences. Our method, called the Nonrigid Iterative Closest Points (NICPs), can be applied to surfaces of arbitrary topology. It does not impose any restrictions on the deformation, e.g. rigidity or articulation. Finally, it does not require parametrization of input meshes. Our method is based on an objective function that combines distance and regularization terms. Unlike the standard ICP, the distance term is determined based on multiple two-way correspondences rather than single one-way correspondences between surfaces. A Laplacian-based regularization term is proposed to take full advantage of multiple two-way correspondences. This term regularizes the surface movement by enforcing vertices to move coherently with their 1-ring neighbors. The proposed method achieves good performances when no global pose differences or significant amount of bending exists in the models, for example, families of similar shapes, like human femur and vertebrae models.
KW - Bone
KW - Multiple two-way correspondences
KW - Nonrigid iterative closest points (NICPs)
KW - Surface registration
UR - http://www.scopus.com/inward/record.url?scp=85030830756&partnerID=8YFLogxK
U2 - 10.1016/j.optlaseng.2017.08.005
DO - 10.1016/j.optlaseng.2017.08.005
M3 - Journal Article (refereed)
AN - SCOPUS:85030830756
SN - 0143-8166
VL - 100
SP - 141
EP - 154
JO - Optics and Lasers in Engineering
JF - Optics and Lasers in Engineering
ER -