TY - JOUR
T1 - Off-Grid Channel Estimation With Sparse Bayesian Learning for OTFS Systems
AU - WEI, Zhiqiang
AU - YUAN, Weijie
AU - LI, Shuangyang
AU - YUAN, Jinhong
AU - NG, Derrick Wing Kwan
PY - 2022/9
Y1 - 2022/9
N2 - This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fully exploit the channel sparsity in the delay-Doppler (DD) domain, we estimate the original DD domain channel response rather than the effective DD domain channel response as commonly adopted in the literature. OTFS channel estimation is firstly formulated as a one-dimensional (1D) off-grid sparse signal recovery (SSR) problem based on a virtual sampling grid defined in the DD space, where the on-grid and off-grid components of the delay and Doppler shifts are separated for estimation. In particular, the on-grid components of the delay and Doppler shifts are jointly determined by the entry indices with significant values in the recovered sparse vector. Then, the corresponding off-grid components are modeled as hyper-parameters in the proposed SBL framework, which can be estimated via the expectation-maximization method. To strike a balance between channel estimation performance and computational complexity, we further propose a two-dimensional (2D) off-grid SSR problem via decoupling the delay and Doppler shift estimations. In our developed 1D and 2D off-grid SBL-based channel estimation algorithms, the hyper-parameters are updated alternatively for computing the conditional posterior distribution of channels, which can be exploited to reconstruct the effective DD domain channel. Compared with the 1D method, the proposed 2D method enjoys a much lower computational complexity while only suffers a slight performance degradation. Simulation results verify the superior performance of the proposed channel estimation schemes over state-of-the-art schemes.
AB - This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fully exploit the channel sparsity in the delay-Doppler (DD) domain, we estimate the original DD domain channel response rather than the effective DD domain channel response as commonly adopted in the literature. OTFS channel estimation is firstly formulated as a one-dimensional (1D) off-grid sparse signal recovery (SSR) problem based on a virtual sampling grid defined in the DD space, where the on-grid and off-grid components of the delay and Doppler shifts are separated for estimation. In particular, the on-grid components of the delay and Doppler shifts are jointly determined by the entry indices with significant values in the recovered sparse vector. Then, the corresponding off-grid components are modeled as hyper-parameters in the proposed SBL framework, which can be estimated via the expectation-maximization method. To strike a balance between channel estimation performance and computational complexity, we further propose a two-dimensional (2D) off-grid SSR problem via decoupling the delay and Doppler shift estimations. In our developed 1D and 2D off-grid SBL-based channel estimation algorithms, the hyper-parameters are updated alternatively for computing the conditional posterior distribution of channels, which can be exploited to reconstruct the effective DD domain channel. Compared with the 1D method, the proposed 2D method enjoys a much lower computational complexity while only suffers a slight performance degradation. Simulation results verify the superior performance of the proposed channel estimation schemes over state-of-the-art schemes.
KW - channel estimation
KW - off-grid
KW - OTFS
KW - sparse Bayesian learning
UR - http://www.scopus.com/inward/record.url?scp=85126702453&partnerID=8YFLogxK
U2 - 10.1109/TWC.2022.3158616
DO - 10.1109/TWC.2022.3158616
M3 - Journal Article (refereed)
AN - SCOPUS:85126702453
SN - 1536-1276
VL - 21
SP - 7407
EP - 7426
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 9
ER -