Projects per year
Abstract
In this work, we investigate the problem of computing an experimental distribution from a combination of the observational distribution and a partial qualitative description of the causal structure of the domain under investigation. This description is given by a partial ancestral graph (PAG) that represents a Markov equivalence class of causal diagrams, i.e., diagrams that entail the same conditional independence model over observed variables, and is learnable from the observational data. Accordingly, we develop a complete algorithm to compute the causal effect of an arbitrary set of intervention variables on an arbitrary outcome set.
Original language | English |
---|---|
Title of host publication | Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
Editors | Sarit Kraus |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 6181-6185 |
Number of pages | 5 |
ISBN (Electronic) | 9780999241141 |
DOIs | |
Publication status | Published - Aug 2019 |
Event | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China Duration: 10 Aug 2019 → 16 Aug 2019 https://www.ijcai19.org/ |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
Volume | 2019-August |
ISSN (Print) | 1045-0823 |
Conference
Conference | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
---|---|
Abbreviated title | IJCAI2019 |
Country/Territory | China |
City | Macao |
Period | 10/08/19 → 16/08/19 |
Internet address |
Fingerprint
Dive into the research topics of 'On causal identification under Markov equivalence'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Causation, Decision, and Imprecise Probabilities
ZHANG, J. (PI) & SEIDENFELD, T. (CoI)
Research Grants Council (HKSAR)
1/01/16 → 31/12/17
Project: Grant Research