TY - JOUR
T1 - On the convergence rate of a quasi-Newton method for inverse eigen value problems
AU - CHAN, Raymond H.
AU - XU, Shu-Fang
AU - ZHOU, Hao-Min
PY - 1999/1
Y1 - 1999/1
N2 - In this paper, we first note that the proof of the quadratic convergence of the quasi-Newton method as given in Friedland, Nocedal, and Overton [SIAM J. Numer. Anal., 24 (1987), pp. 634-667] is incorrect. Then we give a correct proof of the convergence.
AB - In this paper, we first note that the proof of the quadratic convergence of the quasi-Newton method as given in Friedland, Nocedal, and Overton [SIAM J. Numer. Anal., 24 (1987), pp. 634-667] is incorrect. Then we give a correct proof of the convergence.
KW - Inverse eigenvalue problem
KW - Newton method
UR - http://www.scopus.com/inward/record.url?scp=0042627697&partnerID=8YFLogxK
U2 - 10.1137/S0036142997327051
DO - 10.1137/S0036142997327051
M3 - Journal Article (refereed)
AN - SCOPUS:0042627697
SN - 0036-1429
VL - 36
SP - 436
EP - 441
JO - SIAM Journal on Numerical Analysis
JF - SIAM Journal on Numerical Analysis
IS - 2
ER -