Abstract
Evolutionary Algorithms (EAs) are effective and robust methods for solving many practical problems such as feature selection, electrical circuits synthesis, and data mining. However, they may execute for a long time for some difficult problems, because several fitness evaluations must be performed. A promising approach to overcome this limitation is to parallelize these algorithms. In this paper, we propose to implement a parallel EA on consumer-level graphics cards. We perform experiments to compare our parallel EA with an ordinary EA and demonstrate that the former is much more effective than the latter. Since consumer-level graphics cards are available in ubiquitous personal computers and these computers are easy to use and manage, more people will be able to use our parallel algorithm to solve their problems encountered in real-world applications.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005 |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 2286-2293 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 1 Jan 2005 |
Bibliographical note
Paper presented at the 2005 IEEE Congress on Evolutionary Computation (IEEE CEC 2005), 2-5 September 2005, Edinburgh, Scotland.ISBN of the source publication: 0780393635