Abstract
In this paper, we propose a probabilistic reduced-dimensional vector autoregressive (PredVAR) model with oblique projections. This model partitions the measurement space into a dynamic subspace and a static subspace that do not need to be orthogonal. The partition allows us to apply an oblique projection to extract dynamic latent variables (DLVs) from high-dimensional data with maximized predictability. We develop an alternating iterative PredVAR algorithm that exploits the interaction between updating the latent VAR dynamics and estimating the oblique projection, using expectation maximization (EM) and a statistical constraint. In addition, the noise covariance matrices are estimated as a natural outcome of the EM method. A simulation case study of the nonlinear Lorenz oscillation system illustrates the advantages of the proposed approach over two alternatives.
Original language | English |
---|---|
Title of host publication | Proceedings : 2023 62nd IEEE Conference on Decision and Control, CDC 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 7623-7628 |
Number of pages | 6 |
ISBN (Electronic) | 9798350301243 |
DOIs | |
Publication status | Published - 2023 |
Event | 62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore Duration: 13 Dec 2023 → 15 Dec 2023 |
Publication series
Name | Proceedings of the IEEE Conference on Decision and Control |
---|---|
Publisher | IEEE |
ISSN (Print) | 0743-1546 |
ISSN (Electronic) | 2576-2370 |
Conference
Conference | 62nd IEEE Conference on Decision and Control, CDC 2023 |
---|---|
Country/Territory | Singapore |
City | Singapore |
Period | 13/12/23 → 15/12/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.