Sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 polyelectrolyte for high-performance all-solid-state supercapacitors

Chao LU*, Xi CHEN*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

23 Citations (Scopus)

Abstract

All-solid-state supercapacitors with high power density, lightweight and durability have shown enormous potential for sustainable energy applications. However, the insufficient mechanical and electrochemical properties of polyelectrolyte membranes restrict their energy storage performances. Here, we report a sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 (PVDF/ZIF-8) polyelectrolyte with superior mechanical and ionic properties for boosting energy storage performances of the supercapacitors. ZIF-8 nanoparticles with 8% content were dispersed uniformly into PVDF substrate and improved ionic liquid uptake of the membrane (from 42% to 74%) because of its high surface area (764 m2g−1) and porous structure (pore width of 2.1 nm). Meanwhile, plastication effect of ZIF-8 materials improved mechanical properties of the membrane with tensile modulus of 2.88 MPa and break elongation of 11.6%. The PVDF/ZIF-8 based supercapacitors delivered a high specific capacitance of 156 F g−1 at current density of 1 Ag−1 and showed good rate capability at current densities from 1 to 10 Ag−1. The device could keep working over 20000 cycles at 1 Ag−1 with capacitance retention of 91.7%, showing excellent cycling stability and enormous potential for applications. This work sheds light on design of novel polyelectrolyte membranes with high electrochemical and mechanical properties for long life energy storage devices. © 2019 Elsevier B.V.
Original languageEnglish
Article number227587
Number of pages6
JournalJournal of Power Sources
Volume448
DOIs
Publication statusPublished - 2020
Externally publishedYes

Bibliographical note

This work was supported by the Earth Engineering Center, and Center for Advanced Materials for Energy and Environment at Columbia University.

Keywords

  • All-solid-state supercapacitors
  • Electrochemical properties
  • Mechanical properties
  • Polyelectrolyte
  • PVDF/ZIF-8
  • Sea-island nanostructure

Fingerprint

Dive into the research topics of 'Sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 polyelectrolyte for high-performance all-solid-state supercapacitors'. Together they form a unique fingerprint.

Cite this