Sentiment Strength Detection With a Context-dependent Lexicon-based Convolutional Neural Network

Minghui HUANG, Haoran XIE*, Yanghui RAO, Jingrong FENG, Fu Lee WANG

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

45 Citations (Scopus)

Abstract

Sentiment strength detection is an essential task in sentiment analysis, wherein the sentiment strength of subjective text is automatically determined. Sentiment analysis has numerous applications in different sectors, including business and social domains. In this study, we present a model to effectively extract the features and strength of sentiment from words and text using a context-dependent, lexicon-based convolutional neural network. To build this convolutional neural network, the model is trained using the sentiment polarity for each word from a co-occurrence pattern of words and labels. Then, a context-dependent lexicon is generated from the corpus, which is used to generate positive and negative sentiment word embeddings. Positive sentiment word embeddings, negative sentiment word embeddings, and the pre-trained word embeddings are input to a 3-channel convolutional neural network (CNN) to predict the strength of the sentiments. Moreover, with the trained convolutional neural network model, we can obtain a learned sentiment strength-specific word embedding, which generates a sentiment strength-specific lexicon (SSS-Lex) that contains word associations and sentiment intensity scores. To validate the effectiveness of sentiment strength detection in the proposed model, we evaluate the model using six real-world datasets. Furthermore, to evaluate the sentiment strength-specific lexicon, we compare it with seven existing lexicons in three evaluation tasks from the SemEval-2015 and SemEval-2016 competitions. Experimental results indicate that the proposed model can predict the sentiment strength of documents more effectively than the baseline methods, and that the SSS-Lex is of higher quality than the existing lexicons.
Original languageEnglish
Pages (from-to)389-399
Number of pages11
JournalInformation Sciences
Volume520
Early online date10 Feb 2020
DOIs
Publication statusPublished - May 2020

Bibliographical note

The work described in this paper was fully supported by the Innovation and Technology Fund (Project No. GHP/022/17GD) from the Innovation and Technology Commission of the Government of the Hong Kong Special Administrative Region, HKIBS Research Seed Fund 2019/2020 (HKIBS RSF-190-009) of Lingnan University, Hong Kong.

Keywords

  • Convolutional neural network
  • Sentiment analysis
  • Sentiment strength detection
  • Sentiment strength-specific lexicon
  • Text mining

Fingerprint

Dive into the research topics of 'Sentiment Strength Detection With a Context-dependent Lexicon-based Convolutional Neural Network'. Together they form a unique fingerprint.

Cite this