Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction

Shaohua ZHI, Marc KACHELRIEß, Xuanqin MOU*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

4 Citations (Scopus)

Abstract

Purpose: Four-dimensional cone-beam computed tomography (4D CBCT) is developed to reconstruct a sequence of phase-resolved images, which could assist in verifying the patient's position and offering information for cancer treatment planning. However, 4D CBCT images suffer from severe streaking artifacts and noise due to the extreme sparse-view CT reconstruction problem for each phase. As a result, it would cause inaccuracy of treatment estimation. The purpose of this paper was to develop a new 4D CBCT reconstruction method to generate a series of high spatiotemporal 4D CBCT images.
Methods: Considering the advantage of (DL) on representing structural features and correlation between neighboring pixels effectively, we construct a novel DL-based method for the 4D CBCT reconstruction. In this study, both a motion-aware dictionary and a spatially structural 2D dictionary are trained for 4D CBCT by excavating the spatiotemporal correlation among ten phase-resolved images and the spatial information in each image, respectively. Specifically, two reconstruction models are produced in this study. The first one is the motion-aware dictionary learning-based 4D CBCT algorithm, called motion-aware DL based 4D CBCT (MaDL). The second one is the MaDL equipped with a prior knowledge constraint, called pMaDL. Qualitative and quantitative evaluations are performed using a 4D extended cardiac torso (XCAT) phantom, simulated patient data, and two sets of patient data sets. Several state-of-the-art 4D CBCT algorithms, such as the McKinnon–Bates (MKB) algorithm, prior image constrained compressed sensing (PICCS), and the high-quality initial image-guided 4D CBCT reconstruction method (HQI-4DCBCT) are applied for comparison to validate the performance of the proposed MaDL and prior constraint MaDL (pMaDL) pmadl reconstruction frameworks.
Results: Experimental results validate that the proposed MaDL can output the reconstructions with few streaking artifacts but some structural information such as tumors and blood vessels, may still be missed. Meanwhile, the results of the proposed pMaDL demonstrate an improved spatiotemporal resolution of the reconstructed 4D CBCT images. In these improved 4D CBCT reconstructions, streaking artifacts are suppressed primarily and detailed structures are also restored. Regarding the XCAT phantom, quantitative evaluations indicate that an average of 58.70%, 45.25%, and 40.10% decrease in terms of root-mean-square error (RMSE) and an average of 2.10, 1.37, and 1.37 times in terms of structural similarity index (SSIM) are achieved by the proposed pMaDL method when compared with piccs, PICCS, MaDL(2D), and MaDL(2D), respectively. Moreover the proposed pMaDL achieves a comparable performance with HQI-4DCBCT algorithm in terms of RMSE and SSIM metrics. However, pMaDL has a better ability to suppress streaking artifacts than HQI-4DCBCT.
Conclusions: The proposed algorithm could reconstruct a set of 4D CBCT images with both high spatiotemporal resolution and detailed features preservation. Moreover the proposed pMaDL can effectively suppress the streaking artifacts in the resultant reconstructions, while achieving an overall improved spatiotemporal resolution by incorporating the motion-aware dictionary with a prior constraint into the proposed 4D CBCT iterative framework.
Original languageEnglish
Pages (from-to)6421-6436
Number of pages16
JournalMedical Physics
Volume48
Issue number10
Early online date13 Sept 2021
DOIs
Publication statusPublished - Oct 2021
Externally publishedYes

Keywords

  • four-dimensional cone-beam computed tomography (4D CBCT)
  • motion-aware dictionary (MaDL)
  • prior knowledge

Fingerprint

Dive into the research topics of 'Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction'. Together they form a unique fingerprint.

Cite this