To adapt or not to adapt? Technical debt and learning driven self-adaptation for managing runtime performance


Research output: Book Chapters | Papers in Conference ProceedingsConference paper (refereed)Researchpeer-review

23 Citations (Scopus)


Self-adaptive system (SAS) can adapt itself to optimize various key performance indicators in response to the dynamics and uncertainty in environment. In this paper, we present Debt Learning Driven Adaptation (DLDA), an framework that dynamically determines when and whether to adapt the SAS at runtime. DLDA leverages the temporal adaptation debt, a notion derived from the technical debt metaphor, to quantify the time-varying money that the SAS carries in relation to its performance and Service Level Agreements. We designed a temporal net debt driven labeling to label whether it is economically healthier to adapt the SAS (or not) in a circumstance, based on which an online machine learning classifier learns the correlation, and then predicts whether to adapt under the future circumstances. We conducted comprehensive experiments to evaluate DLDA with two different planners, using 5 online machine learning classifiers, and in comparison to 4 state-of-the-art debt-oblivious triggering approaches. The results reveal the effectiveness and superiority of DLDA according to different metrics. © 2018 Association for Computing Machinery.
Original languageEnglish
Title of host publicationICPE 2018 - Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering
PublisherAssociation for Computing Machinery, Inc
Number of pages8
ISBN (Print)9781450350952
Publication statusPublished - 30 Mar 2018
Externally publishedYes

Bibliographical note

This work is supported by the DAASE Programme Grant from the EPSRC (Grant No. EP/J017515/1).


  • Learning
  • Performance
  • Self-adaptive systems
  • Technical debt


Dive into the research topics of 'To adapt or not to adapt? Technical debt and learning driven self-adaptation for managing runtime performance'. Together they form a unique fingerprint.

Cite this