Abstract
Ocean warming increases the incidence of coral bleaching, which reduces or eliminates the nutrition corals receive from their algal symbionts, often resulting in widespread mortality. In contrast to extensive knowledge on the thermal tolerance of coral-associated symbionts, the role of the coral host in bleaching patterns across species is poorly understood. Here, we applied a Bayesian analysis of carbon and nitrogen stable isotope data to determine the trophic niche overlap between corals and their symbionts and propose benchmark values that define autotrophy, heterotrophy, and mixotrophy. The amount of overlap between coral and symbiont niche was negatively correlated with polyp size and bleaching resistance. Our results indicated that as oceans warm, autotrophic corals lose their competitive advantage and thus are the first to disappear from coral reefs.
Original language | English |
---|---|
Number of pages | 8 |
Journal | Science advances |
Volume | 6 |
Issue number | 15 |
DOIs | |
Publication status | Published - 10 Apr 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Funding
This work was supported by Research Grants Council Hong Kong Early Career Scheme No. 789913 and Research Grants Council Hong Kong General Research Fund No. 17100014.