Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction

Ying GUO, Rong ZHANG, Shaoce ZHANG, Hu HONG, Yuwei ZHAO, Zhaodong HUANG, Cuiping HAN, Hongfei LI, Chunyi ZHI*

*Corresponding author for this work

Research output: Journal PublicationsJournal Article (refereed)peer-review

92 Citations (Scopus)

Abstract

Direct electrochemical two-electron oxygen reduction (2eORR) into H 2O 2 provides a promising alternative for on-site green H 2O 2 production to the predominant anthraquinone oxidation technology. Oxidized carbon materials have demonstrated their impressive 2eORR activity due to oxygenated functional groups beneficial to the H 2O 2 formation pathways. However, the 2eORR capability of O-doped carbon catalysts is hindered by the density of O-induced active sites due to the rather low O content (<15%). Herein, we reported a carbon quantum dot (CQD) catalyst with an ultrahigh O content (30.4 at%) fabricated by using glucose (C 6H 12O 6) as the carbon source due to its high atomic ratio of oxygen-to-carbon. The O-rich CQD catalyst exhibits an excellent catalytic capability of H 2O 2 production with nearly 100% selectivity, exceeding all reported O-doped carbon catalysts. Besides, the CQD catalyst exhibits great potential in practical H 2O 2 production with a high yield of 10.06 mg cm −2 h −1 and Faraday efficiency of 97.7%, as well as good stability over 10 hours. Experimental and theoretical investigations confirm that the great majority of the C-O bonds are from the etheric groups in the CQD catalyst, and the carbon atoms of the C-O bonds are the most active sites for the 2eORR.

Original languageEnglish
Pages (from-to)4167-4174
Number of pages8
JournalEnergy and Environmental Science
Volume15
Issue number10
Early online date15 Aug 2022
DOIs
Publication statusPublished - 1 Oct 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 The Royal Society of Chemistry.

Funding

This work was supported by the National Key R&D Program of China under Project 2019YFA0705104 and General Research Fund (GRF) under Project CityU11212920.

Fingerprint

Dive into the research topics of 'Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction'. Together they form a unique fingerprint.

Cite this