Abstract
As the rapid development of Web 2.0 communities, social media service providers offer users a convenient way to share and create their own contents such as online comments, blogs, microblogs/tweets, etc. Understanding the latent emotions of such short texts from social media via the computational model is an important issue as such a model will help us to identify the social events and make better decisions (e.g., investment in stocking market). However, it is always very challenge to detect emotions from above user-generated contents due to the sparsity problem (e.g., a tweet is a short message). In this article, we propose an universal affective model (UAM) to classify readers’ emotions over unlabeled short texts. Different from conventional text classification model, the UAM structurally consists of topic-level and term-level sub-models, and detects social emotions from the perspective of readers in social media. Through the evaluation on real-world data sets, the experimental results validate the effectiveness of the proposed model in terms of the effectiveness and accuracy.
Original language | English |
---|---|
Pages (from-to) | 322-333 |
Number of pages | 12 |
Journal | Expert Systems with Applications |
Volume | 114 |
Early online date | 26 Jul 2018 |
DOIs | |
Publication status | Published - 30 Dec 2018 |
Externally published | Yes |
Funding
The work described in this paper was fully supported by the Innovation and Technology Fund (Project No. GHP/022/17GD) from the Innovation and Technology Commission of the Government of the Hong Kong Special Administrative Region, a grant from Research Grants Council of Hong Kong Special Administrative Region, China (UGC/FDS11/E03/16), Guangdong Science and Technology Program grant 2017A050506025, and the National Natural Science Foundation of China (61502545).
Keywords
- Biterm
- Emotion classification
- Short text
- Topic model